2011年1月16日 星期日

Zirconium www.tool-tool.com

Zirconium ( /zərˈkoʊniəm/ zər-KOH-ni-əm) is a chemical element with the symbol Zr and atomic number 40. Its atomic mass is 91.224. It is a lustrous, grey-white, strong transition metal that resembles titanium. Zirconium is used as an alloying agent for its strong resistance to corrosion. It is never found as a native metal; it is obtained mainly from the mineral zircon, which can be purified with chlorine. Zirconium was first isolated in an impure form in 1824 by Jöns Jakob Berzelius.

Zirconium has no known biological role. Zirconium forms both inorganic and organometallic compounds such as zirconium dioxide and zirconocene dichloride, respectively. There are five naturally occurring isotopes, three of which are stable. Short-term exposure to zirconium powder causes minor irritation, and inhalation of zirconium compounds can cause skin and lung granulomas.

[edit] Characteristics

Zirconium is a lustrous, grayish-white, soft, ductile, and malleable metal which is solid at room temperature, though it becomes hard and brittle at lower purities.[4][5] In powder form, zirconium is highly flammable, but the solid form is far less prone to ignition. Zirconium is highly resistant to corrosion by alkalies, acids, salt water, and other agents.[6] However, it will dissolve in hydrochloric and sulfuric acid, especially when fluorine is present.[7] Alloys with zinc become magnetic below 35 K.[6]

Zirconium's melting point is at 1855°C (3371°F), and its boiling point 4371°C (7900°F).[6] Zirconium has an electronegativity of 1.33 on the Pauling scale. Of the elements within d-block, zirconium has the fourth lowest electronegativity after yttrium, lutetium, and hafnium.[8]

[edit] Applications

Because of zirconium's excellent resistance to corrosion, it is often used as an alloying agent in materials that are exposed to corrosive agents, such as surgical appliances, explosive primers, vacuum tube getters and filaments. Zirconium dioxide (ZrO2) is used in laboratory crucibles, metallurgical furnaces, as a refractory material,[6] and it can be sintered into a ceramic knife. Zircon (ZrSiO4) is cut into gemstones for use in jewelry. Zirconium carbonate (3ZrO2·CO2·H2O) was used in lotions to treat poison ivy, but this was discontinued because it occasionally caused bad skin reactions.[4]

An important use of zirconium is for nuclear reactor fuel cladding (in the form of zircaloys) because of its low neutron-capture cross-section and resistance to corrosion.[5][6] Zirconium alloys are used in space vehicle parts for their resistance to heat, an important quality given the extreme heat associated with atmospheric reentry.[9] Zirconium is also a component in some abrasives, such as grinding wheels and sandpaper.[10] Zirconium is used in weapons such as the BLU-97/B Combined Effects Bomb for incendiary effect.

High temperature parts such as combustors, blades and vanes in modern jet engines and stationary gas turbines are to an ever increasing extent being protected by thin ceramic layers which reduce the metal temperatures below and keep them from undergoing (too) extensive deformation which could possibly result in early failure. They are absolutely necessary for the most modern gas turbines which are driven to ever higher firing temperatures to produce more electricity at less CO2. These ceramic layers are usually composed by a mixture of zirconium and yttrium oxide.[11]

[edit] Refining

Upon being collected from coastal waters, the solid mineral zircon is purified by spiral concentrators to remove excess sand and gravel and by magnetic separators to remove ilmenite and rutile. The byproducts can then be dumped back into the water safely, as they are all natural components of beach sand. The refined zircon is then purified into pure zirconium by chlorine or other agents, then sintered until sufficiently ductile for metalworking.[5] Zirconium and hafnium are both contained in zircon and they are quite difficult to separate due to their extremely similar chemical properties.[9] Usually, an ion exchange process is used to separate them.

[edit] History

The zirconium-containing mineral zircon, or its variations (jargoon, hyacinth, jacinth, ligure), were mentioned in biblical writings.[6][9] The mineral was not known to contain a new element until 1789,[10] when Klaproth analyzed a jargoon from the island of Ceylon (now Sri Lanka) in the Indian Ocean. He named the new element Zirkonerde (zirconia).[6]

Humphry Davy attempted to isolate this new element in 1808 through electrolysis, but failed.[4] Zirconium (from Syriac ܙܐܪܓܥܢܥ zargono,[12] Arabic zarkûn ئشقنعى from Persian zargûn زرگون meaning "gold like")[9] was first isolated in an impure form in 1824 by Berzelius by heating a mixture of potassium and potassium-zirconium fluoride in a small decomposition process conducted in an iron tube.[6] These words were adapted into German Zirkon which became the source of the English words: Zircon and Zirconium. [13]

The crystal bar process (or Iodide process), discovered by Anton Eduard van Arkel and Jan Hendrik de Boer in 1925, was the first industrial process for the commercial production of pure metallic zirconium. The process involved thermally decomposing zirconium tetraiodide. It was superseded in 1945 by the much cheaper Kroll process developed by William Justin Kroll, in which zirconium tetrachloride is broken down by magnesium.[5][14]

[edit] Occurrence

[edit] Geological occurrence

Zirconium output in 2005

See also Category: Zirconium minerals

World production trend of zirconium mineral concentrates

Zirconium has a concentration of about 130 mg/kg within the earth's crust and about 0.026 μg/L in sea water,[15] though it is never found in nature as a native metal. The principal commercial source of zirconium is the zirconium silicate mineral, zircon (ZrSiO4),[4] which is found primarily in Australia, Brazil, India, Russia, South Africa, and the United States, as well as in smaller deposits around the world.[5] 80% of zircon mining occurs in Australia and South Africa.[4] Zircon resources exceed 60 million metric tons worldwide[16] and annual worldwide zirconium production is approximately 900,000 metric tons.[15]

Zircon is a by-product of the mining and processing of the titanium minerals ilmenite and rutile, as well as tin mining.[17] From 2003 to 2007, zircon prices have steadily increased from $360 to $840 per metric ton.[16] Zirconium also occurs in more than 140 other recognized mineral species including baddeleyite and kosnarite.[18] This metal is commercially produced mostly by the reduction of the zirconium(IV) chloride with magnesium metal in the Kroll process.[6] Commercial-quality zirconium for most uses still has a content of 1% to 3% hafnium.[4]

This element is relatively abundant in S-type stars, and it has been detected in the sun and in meteorites. Lunar rock samples brought back from several Apollo program missions to the moon have a quite high zirconium oxide content relative to terrestrial rocks.[6]

[edit] Biological role

Zirconium has no known biological role, though zirconium salts are of low toxicity. The human body contains, on average, only 1 milligram of zirconium, and daily intake is approximately 50 μg per day. Zirconium content in human blood is as low as 10 parts per billion. Aquatic plants readily take up soluble zirconium, but it is rare in land plants. 70% of plants have no zirconium content at all, and those that do have as little as 5 parts per billion.[4]

[edit] Compounds

See also: Category:Zirconium compounds

As a transition metal, zirconium forms various inorganic compounds, such as zirconium dioxide (ZrO2). This compound, also referred to as zirconia, has exceptional fracture toughness and chemical resistance, especially in its cubic form.[19] These properties make zirconia useful as a thermal barrier coating,[20] though it is also a common diamond substitute.[19] Zirconium tungstate is an unusual substance in that it shrinks in all directions when heated, whereas most other substances expand when heated.[6] ZrZn2 is one of only two substances to exhibit superconductivity and ferromagnetism simultaneously, with the other being UGe2.[21] Other inorganic zirconium compounds include zirconium(II) hydride, zirconium nitride, and zirconium tetrachloride (ZrCl4), which is used in the Friedel-Crafts reaction.[22]

Organozirconium chemistry is the study of compounds containing a carbon-zirconium bond. These organozirconium compounds are often employed as polymerization catalysts. The first such compound was zirconocene dibromide, prepared in 1952 by John M. Birmingham at Harvard University.[23] Schwartz's reagent, prepared in 1970 by P. C. Wailes and H. Weigold,[24] is a metallocene used in organic synthesis for transformations of alkenes and alkynes.[25]

[edit] Isotopes

A zirconium rod

Main article: Isotopes of zirconium

Naturally occurring zirconium is composed of five isotopes. 90Zr, 91Zr, and 92Zr are stable. 94Zr has a half-life of 1.10×1017 years. 96Zr has a half-life of 2.4×1019 years, making it the longest-lived radioisotope of zirconium. Of these natural isotopes, 90Zr is the most common, making up 51.45% of all zirconium. 96Zr is the least common, comprising only 2.80% of zirconium.[26]

28 artificial isotopes of zirconium have been synthesized, ranging in atomic mass from 78 to 110. 93Zr is the longest-lived artificial isotope, with a half-life of 1.53×106 years. 110Zr, the heaviest isotope of zirconium, is also the shortest-lived, with an estimated half-life of only 30 milliseconds. Radioactive isotopes at or above mass number 93 decay by β−, whereas those at or below 89 decay by β+. The only exception is 88Zr, which decays by ε.[26]

Zirconium also has six metastable isomers: 83mZr, 85mZr, 89mZr, 90m1Zr, 90m2Zr, and 91mZr. Of these, 90m2Zr has the shortest half-life at 131 nanoseconds. 89mZr is the longest lived with a half-life of 4.161 minutes.[26]

[edit] Toxicity

Short-term exposure to zirconium powder can cause irritation, but only contact with the eyes requires medical attention.[27] Inhalation of zirconium compounds can cause skin and lung granulomas. Zirconium aerosols can cause pulmonary granulomas. Persistent exposure to zirconium tetrachloride resulted in increased mortality in rats and guinea pigs and a decrease of blood hemoglobin and red blood cells in dogs. OSHA recommends a 5 mg/m3 time weighted average limit and a 10 mg/m3 short-term exposure limit.

引用出處:

http://en.wikipedia.org/wiki/Zirconium

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

沒有留言: