2011年8月26日 星期五

Cubic zirconia www.tool-tool.com

Cubic zirconia (or CZ) is the cubic crystalline form of zirconium dioxide (ZrO2). The synthesized material is hard, optically flawless and usually colorless, but may be made in a variety of different colors. It should not be confused with zircon, which is a zirconium silicate (ZrSiO4). It is sometimes erroneously called "cubic zirconium".

Because of its low cost, durability, and close visual likeness to diamond, synthetic cubic zirconia has remained the most gemologically and economically important competitor for diamonds since 1976. Its main competitor as a synthetic gemstone is the more recently cultivated material, synthetic moissanite.

Technical aspects

Cubic zirconia is crystallographically isometric, an important attribute of a would-be diamond simulant. During synthesis zirconium oxide would naturally form monoclinic crystals, its stable form under normal atmospheric conditions. A stabilizer is required for cubic crystals to form, and remain stable at ordinary temperatures; this may be typically either yttrium or calcium oxide, the amount of stabilizer used depending on the many recipes of individual manufacturers. Therefore the physical and optical properties of synthesized CZ vary, all values being ranges.

It is a dense substance, with a specific gravity between 5.6 and 6.0 — at least 1.6 times that of diamond. Cubic zirconia is relatively hard, at about 8 on the Mohs scale— slightly harder than most semi-precious natural gems.[1] Its refractive index is high at 2.15–2.18 (compared to 2.42 for diamonds) and its luster is adamantine. Its dispersion is very high at 0.058–0.066, exceeding that of diamond (0.044). Cubic zirconia has no cleavage and exhibits a conchoidal fracture. Because of its high hardness, it is generally considered brittle.

Under shortwave UV cubic zirconia typically fluoresces a yellow, greenish yellow or "beige". Under longwave UV the effect is greatly diminished, with a whitish glow sometimes being seen. Colored stones may show a strong, complex rare earth absorption spectrum.

[edit] History

Discovered in 1892, the yellowish monoclinic mineral baddeleyite is a natural form of zirconium oxide. It has little economic importance because of its rarity.

The extremely high melting point of zirconia of 2750°C (4976°F) makes the controlled growth of single crystals difficult, as no existing crucible could hold the material in its molten state. However, stabilization of cubic zirconium oxide had been realized early on, with the synthetic product stabilized zirconia introduced in 1930. Although cubic, it was in the form of a polycrystalline ceramic: it was used as a refractory material, highly resistant to chemical and thermal (up to 2540°C or 4604°F) attack.

Seven years later, German mineralogists M. V. Stackelberg and K. Chudoba discovered naturally occurring cubic zirconia in the form of microscopic grains included in metamict zircon. This was thought to be a byproduct of the metamictization process, but the two scientists did not think the mineral important enough to give it a formal name. The discovery was confirmed through X-ray diffraction, proving the existence of a natural counterpart to the synthetic product.

As with the majority of grown diamond substitutes, the idea of producing single-crystal cubic zirconia arose in the minds of scientists seeking a new and versatile material for use in lasers and other optical applications. Its production eventually exceeded that of earlier synthetics, such as synthetic strontium titanate, synthetic rutile, YAG (yttrium aluminium garnet) and GGG (gadolinium gallium garnet).

Some of the earliest research into controlled single-crystal growth of cubic zirconia occurred in 1960s France, much work being done by Y. Roulin and R. Collongues. This technique involved molten zirconia being contained within a thin shell of still-solid zirconia, with crystal growth from the melt: The process was named cold crucible, an allusion to the system of water cooling used. Though promising, these attempts yielded only small crystals.

Later, Soviet scientists under V. V. Osiko at the Lebedev Physical Institute in Moscow perfected the technique, which was then named skull crucible (an allusion either to the shape of the water-cooled container or to the form of crystals sometimes grown). They named the jewel Fianit after the institutes name FIAN (Physical Institute of the Academy of Science), but the name was not used outside of the USSR. Their breakthrough was published in 1973, and commercial production began in 1976. By 1980 annual global production had reached 50 million carats (10 tonnes).

[edit] Synthesis

Worker monitoring melting zirconium oxide and yttrium oxide in an induction heated "cold crucible" to create cubic zirconia.

The Soviet-perfected skull crucible is still used today, with little variation. Water-filled copper pipes provide a cup-shaped scaffold in which the zirconia feed powder is packed, the whole contraption being wrapped with radio frequency induction coils running perpendicular to the copper pipes. A stabilizer, typically calcium oxide, is mixed with the feed powder.

The RF induction coils function in a manner similar to the primary winding in a transformer. The zirconia acts as the "secondary winding" of a transformer which in effect is "shorted" out and thus gets hot. This heating method requires the introduction of small pieces of zirconium metal. The metal is placed near the outside of the charge and is melted by the RF coils and heats the surrounding zirconia powder from the outside inwards. The cooling water-filled pipes embracing the outer surface maintain a thin "skin" (1–2 mm) of unmelted feed, creating a self-contained apparatus. After several hours the temperature is reduced in a controlled and gradual manner, resulting in the formation of flawless columnar crystals. Prolonged annealing at 1400°C is then carried out to remove any strain. The annealed crystals, which are typically 5 cm long by 2.5 cm wide (although they may be grown much larger), are then cut into gemstones.

The addition of certain metal oxide dopants into the feed powder results in a variety of colors. For example:

Dopant Color(s) Cerium yellow orange red Chromium green Neodymium purple Erbium pink Titanium golden brown

  • Purple Cubic zirconia with checkerboard cut

  • Multi colour Cubic zirconia

  • Three tone Cubic zirconia gems

[edit] Innovations

In recent years manufacturers have sought ways of distinguishing their product by supposedly "improving" cubic zirconia. Coating finished CZs in a film of diamond-like carbon (DLC) or Amorphous Diamond is one such innovation, a process using chemical vapor deposition. The resulting material is purportedly harder, more lustrous and more like diamond overall. The coating is thought to quench the excess fire of CZ, while improving its refractive index, thus making it appear more like diamond. Additionally, because of the high percentage of diamond bonds in the amorphous diamond coating, the finished simulant will show a positive diamond signature under Raman spectroscopy.

Another technique first applied to quartz and topaz has also been adapted to cubic zirconia: vacuum-sputtering an extremely thin layer of metal oxide (typically gold) on to the finished stones creates an iridescent effect.[2] This material is marketed as "mystic" by many dealers. Unlike DLC, the effect is not permanent, as abrasion easily removes the oxide layer.

[edit] Cubic zirconia versus diamond

There are a few key features of cubic zirconia which distinguish it from diamond:

  • Dispersion: With a dispersive power greater than diamond (0.060 vs. 0.044) the fire of cubic zirconia is more prismatic.[citation needed]
  • Hardness: Cubic zirconia has a rating of approximately 8 on Mohs hardness scale vs. a rating of 10 for diamonds.[3]
  • Specific gravity: a cubic zirconia will weigh about 1.7 times more than a diamond of the same size.
  • Flaws: Contemporary production of cubic zirconia is virtually flawless,[citation needed] whereas most diamonds have some sort of defect, be it a feather, included crystal, or perhaps a remnant of an original crystal face (e.g. trigons).[citation needed]
  • Refractive index: Cubic zirconia has a refractive index of 2.176, compared to a diamond's 2.417.
  • Cut: Some cubic zirconia gemstones are cut with facet shapes that differ from those typically used for diamonds. This difference would be visible under close inspection with a loupe.
  • Color (or more precisely, the lack thereof): Only the rarest of diamonds are truly colorless, most having a tinge of yellow or brown to some extent. By comparison, cubic zirconia can be made in most cases entirely colorless: equivalent to a perfect "D" on diamond's color grading scale.
  • Thermal conductivity: Cubic zirconias are thermal insulators while diamonds are among the most efficient thermal conductors, exceeding copper. This makes telling the difference between diamond and cubic zirconia quite easy for those with the right instruments.



歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿SMD一体化粉末合金電感全自動無人化設備common mode電感全自動設備贴片共模电感全自動設備PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millscommon modeСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

SMD Automatic Mechanical’ Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな






(2)Carbide Cutting tools設計














Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.