2010年9月8日 星期三

Perchlorate www.tool-tool.com

版1all

Bewise Inc. www.tool-tool.com Reference source from the internet.

Perchlorates are the salts derived from perchloric acid (HClO4). They occur both naturally and through manufacturing. They have been used as a medicine for more than 50 years to treat thyroid gland disorders. They are used extensively within the pyrotechnics industry, and ammonium perchlorate is also a component of solid rocket fuel. Lithium perchlorate, which decomposes exothermically to give oxygen, is used in oxygen "candles" on spacecraft, submarines and in other esoteric situations where a reliable backup or supplementary oxygen supply is needed. Most perchlorate salts are soluble in water.

The chemical notation for the perchlorate ion is ClO−4. The ion has a molecular mass of 99.45 amu.

A perchlorate (compound) is a compound containing this group, with chlorine in oxidation state +7.

The perchlorate ion is the least reactive oxidizer of the generalized chlorates. This is apparently paradoxical, since higher oxidation numbers are expected to be progressively stronger oxidizers, and less stable. Perchlorate does in fact have the highest redox potential and is least stable thermodynamically, but the central chlorine is a closed shell atom and well protected by the four oxygens. Hence, perchlorate reacts sluggishly. Most perchlorate compounds, especially salts of electropositive metals such as sodium perchlorate or potassium perchlorate, are slow to react unless heated. This property is useful in many applications, such as flares, where the device should not explode, or even catch fire spontaneously.

Mixtures of perchlorates with organic compounds are more reactive. Although they do not usually catch fire or explode unless heated, there are a number of exceptions. Large amounts of improperly stored ammonium perchlorate led to the PEPCON disaster, in which an explosion destroyed one of the two large scale production plants for ammonium perchlorate in the US.

The high oxygen content and the high stability of perchlorates make them ideal oxidizers for fireworks and airbags and as key compounds in solid rocket fuel. The solid rocket boosters of the space shuttle contain 350 metric tons of ammonium perchlorate each.

Perchlorate is used in airbags, seat belt pre-tensioner, TPMS (tire pressure monitor system) valve sensors, batteries for keyless entry system -- mentioned in Hyundai TSB 07-00-001 dated 02-07

Perchlorate has been used as a medication to treat hyperthyroidism since the 1950s. At very high doses (70,000–300,000 ppb) the administration of potassium perchlorate was considered the standard of care in the United States, and remains the approved pharmacologic intervention for many countries. In the early 1960s, potassium perchlorate was implicated in the development of aplastic anemia—a condition where the bone marrow fails to produce new blood cells in sufficient quantity—in thirteen patients, seven of whom died. Subsequent investigations have indicated the connection between administration of potassium perchlorate and development of aplastic anemia to be "equivocable at best", which means that the benefit of treatment, if it is the only known treatment, outweighs the risk, and it appeared a contaminant poisoned the 13.

There are several well-documented mechanisms for natural formation of perchlorate. Involving ozone or hydroxyl radicals as oxidizer for sodium chloride from the sea and are somewhat similar to the formation processes of iodates also present in the atmosphere.

As most perchlorates are readily soluble in water, an accumulation of perchlorates in the environment only occurs in arid areas with little or no rainfall. It is known since the beginning of the 20th century that the Atacama Desert not only contains large amounts of nitrates but also trace amounts of perchlorates. The concentration varies but is in the mg/kg range. The dry southwest of the United States also shows accumulation of perchlorates. With the use of nitrates from the Atacama Desert, so called Chile saltpeter as fertilizer the chlorates were also distributed into the environment. As the Chile saltpeter was mostly substituted by nitrates produced by the Haber Bosch process, which contains no perchlorates this source of perchlorates nearly vanished.

In 2006 a mechanism for the formation of perchlorates was proposed which is particularly apropos to the discovery of perchlorate at the Mars Phoenix lander site. It was shown that soils with high concentrations of natural salts could have some of their chloride converted to perchlorate in the presence of sunlight and/or ultraviolet light. The mechanism was reproduced in the lab using chloride rich soils from Death Valley. In 2010 perchlorate was found at the 1000ppb levels in a vast section of Antarctica, with implications that it is formed naturally and globally on Earth and probably on Mars.


Perchlorates are either produced by electrolysis of chloride salts or by the neutralisation of perchloric acid, which is produced by electrolysis of chlorine, with ammonia or other base.

The electrolysis involves the following reactions:

3 Cl2 + 6 OH− → 5 Cl− + ClO3− + 3 H2O
ClO3− + H2O → ClO4− + 2 H+

The industrial scale synthesis for sodium perchlorates starts from sodium chloride. If the electrolysis is not done with the method described at chlorine, but a mixing of the chlorine evolved and the sodium hydroxide is allowed, the reaction mentioned above takes place. The hypochlorite and the chlorate are intermediates in this process.

Low levels of perchlorate have been detected in both drinking water and groundwater in 35 states in the US according to the Environmental Protection Agency. In 2004, the chemical was also found in cow's milk in the area with an average level of 1.3 parts per billion ("ppb" or µg/L), which may have entered the cows through feeding on crops that had exposure to water containing perchlorates. According to the Impact Area Groundwater Study Program, the chemical has been detected as high as 5 µg/L in Massachusetts, well over the state regulation of 2 µg/L.

In some places, perchlorate is detected because of contamination from industrial sites that use or manufacture it. In other places, there is no clear source of perchlorate. In those areas it may be naturally occurring, or could be present because of the use of Chilean fertilizers, which were imported to the U.S. by the hundreds of tons in the early 19th century. One recent area of research has even suggested that perchlorate can be created when lightning strikes a body of water, and perchlorates are created as a byproduct of chlorine generators used in swimming pool chlorination systems.

Fireworks are also a source of perchlorate in lakes.

As of April 2007, the EPA has not yet determined whether perchlorate is present at sufficient levels in the environment to require a nationwide regulation on how much should be allowed in drinking water. In 2005, U.S. EPA issued a recommended Drinking Water Equivalent Level (DWEL) for perchlorate of 24.5 µg/L. In early 2006, EPA issued a “Cleanup Guidance” for this same amount. Both the DWEL and the Cleanup Guidance were based on a thorough review of the existing research by the National Academy of Science (NAS). This followed numerous other studies, including one which suggested human breast milk had an average of 10.5 µg/L of perchlorate. Both the Pentagon and some environmental groups have voiced questions about the NAS report, but no credible science has emerged to challenge the NAS findings. In February 2008, U.S. Food and Drug Administration said that U.S. toddlers on average are being exposed to more than half of the U.S. EPA's safe dose from food alone. In March 2009, a Centers for Disease Control study found 15 brands of infant formula contaminated with perchlorate. Combined with existing perchlorate drinking water contamination, infants could be at risk for exposure to perchlorate above the levels considered safe by E.P.A.

The US Environmental Protection Agency has issued substantial guidance and analysis concerning the impacts of perchlorate on the environment as well as drinking water. California has also issued guidance regarding perchlorate use.

Several states have enacted drinking water standard for perchlorate including Massachusetts in 2006. California's legislature enacted AB 826, the Perchlorate Contamination Prevention Act of 2003, requiring California's Department of Toxic Substance Control (DTSC) to adopt regulations specifying best management practices for perchlorate and perchlorate-containing substances. The Perchlorate Best Management Practices were adopted on December 31, 2005 and became operative on July 1, 2006. California issued drinking water standards in 2007. Several other states, including Arizona, Maryland, Nevada, New Mexico, New York, and Texas have established non-enforceable, advisory levels for perchlorate.

Courts have been called upon to take action with regard to perchlorate. For example, in 2003, a federal district court in California found that Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) applied because perchlorate is ignitable and therefore a “characteristic” hazardous waste. (see Castaic Lake Water Agency v. Whittaker, 272 F. Supp. 2d 1053, 1059-61 (C.D. Cal. 2003)).

One example of perchlorate related problems was found at the Olin Flare Facility, Morgan Hill, California - Perchlorate contamination beneath a former flare manufacturing plant in California was first discovered in 2000, several years after the plant had closed. The plant had used potassium perchlorate as one of the ingredients during its 40 years of operation. By late 2003, the state of California and the Santa Clara Valley Water District had confirmed a groundwater plume currently extending over nine miles through residential and agricultural communities.

The Regional Water Quality Control Board and the Santa Clara Valley Water District have engaged in a major outreach effort that has received extensive press and community response. A well testing program is underway for approximately 1,200 residential, municipal, and agricultural wells in the area. Large ion exchange treatment units are operating in three public water supply systems that include seven municipal wells where perchlorate has been detected. The potentially responsible parties, Olin Corporation and Standard Fuse Incorporated, are supplying bottled water to nearly 800 households with private wells. The Regional Water Quality Control Board is overseeing potentially responsible party (PRP) cleanup efforts.

The two production sites of PEPCON and Kerr McGee in Henderson, Nevada, which were the biggest producers until the explosion of PEPCON in 1988 and the closure of the Kerr McGee plant in 1998, leaked significant amounts of perchlorates into the Las Vegas Wash and from there into Lake Mead and the Colorado River.

The disposal of unused rocket motors and ammunition has led to contamination by perchlorates of several military installations.

Perchlorate adversely affects human health by interfering with iodine uptake into the thyroid gland. In adults, the thyroid gland helps regulate the metabolism by releasing hormones, while in children, the thyroid helps in proper development. Perchlorate is becoming a serious threat to human health and water resources.

The NAS found that perchlorate only affects the thyroid gland. It is not stored in the body, it is not metabolized, and any effects of perchlorate on the thyroid gland are fully reversible once exposure stops. There has been some concern on perchlorate's effects on fetuses, newborns and children, but several peer-reviewed studies on children and newborns also provide reason to believe that low levels of perchlorate do not pose a threat to these populations.[citation needed] On October 1, 2004, the American Thyroid Association (ATA) reported that perchlorate may not be as harmful to newborns, pregnant women and other adults as previously thought.

A study involving healthy adult volunteers determined that at levels above 0.007 milligrams per kilogram per day (mg/(kg·d)), perchlorate can temporarily inhibit the thyroid gland’s ability to absorb iodine from the bloodstream ("iodide uptake inhibition", thus perchlorate is a known goitrogen). The EPA converted this dose into a reference dose of 0.0007 mg/(kg·d) by dividing this level by the standard intraspecies uncertainty factor of 10. The agency then calculated a "drinking water equivalent level" of 24.5 ppb by assuming a person weighs 70 kilograms (154 pounds) and consumes 2 liters (68 ounces) of drinking water per day over a lifetime. Thus, 25 ppb was set as the recommended drinking water standard (the DWEL). For that reason, most media reports call this the "safe" level of exposure. The NAS report also stated additional research would be helpful, but emphasized that the existing database on perchlorate was sufficient to make its reference dose recommendation and ensure it would be protective for everyone.[citation needed]

Recent research, however, has shown inhibition of iodide uptake in the thyroids of women at much lower levels, levels attainable from normally contaminated water and milk.

Several phylogenetically diverse proteobacteria have been found, which can use perchlorate as an electron acceptor.

In the summer of 2008, the Wet Chemistry Laboratory (WCL) on board the 2007 Phoenix Mars Lander performed the first wet chemical analysis of martian soil. The analyses on three samples, two from the surface and one from 5cm depth, revealed a slightly alkaline soil and low levels of salts typically found on Earth. Most unexpected though was the presence of ~ 0.6 wt % perchlorate (ClO4-), most likely as a Mg(ClO4)2 phase .

The extreme temperatures found on Mars typically lead to either crystallization or evaporation of water, making it difficult to imagine that water could be found in liquid form. The salts formed from perchlorates discovered at the Phoenix landing site act as “anti-freeze” and will substantially lower the freezing point of water. Based on the temperature and pressure conditions on present-day Mars at the Phoenix lander site, conditions would allow a perchlorate salt solution to be present in liquid form for a few hours each day during the summer .

The possibility that the perchlorate was a contaminate brought from Earth has been eliminated by several lines of evidence. The Phoenix retro-rockets used ultra pure hydrazine and launch propellants consisted of ammonium perchlorate. Sensors on board Phoenix found no traces of ammonium, and thus the perchlorate in the quantities present in all three soil samples is indigenous to the martian soil.

In response to concerns regarding perchlorate, efforts have been undertaken to produce substitutes for products using perchlorate. For example, efforts to create perchlorate-free flares include both spectrally balanced decoy and colored flare compositions which included nitrate or oxide oxidizers. Because nitrate oxidizers are less reactive than perchlorate oxidizers, high-energy fuels have used to compensate for this energy shortfall. Some of these high-energy fuels were produced using mechanical alloying technology.

* Ammonium perchlorate, NH4ClO4
* Caesium perchlorate, CsClO4
* Lithium perchlorate, LiClO4
* Magnesium perchlorate, Mg(ClO4)2
* Perchloric acid, HClO4
* Potassium perchlorate, KClO4
* Rubidium perchlorate, RbClO4
* Silver perchlorate, AgClO4
* Sodium perchlorate, NaClO4

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、複合式再研磨機、PCD地板專用企口鑽石組合刀具、粉末造粒成型機、主機版專用頂級電桿、PCD V-Cut刀、捨棄式圓鋸片組、粉末成型機、航空機械鉸刀、主機版專用頂級電感、’汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具、銑刀與切斷複合再研磨機、銑刀與鑽頭複合再研磨機、銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Compound Sharpener’Milling cutter、INDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’POWDER FORMING MACHINE’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、Staple Cutter’PCD diamond cutter specialized in grooving floors’V-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert’ PCD Diamond Tool’ Saw Blade with Indexable Insert’NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills’end mill grinder’drill grinder’sharpener、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

沒有留言: