2011年2月7日 星期一

Gallium www.tool-tool.com

Gallium ( /ˈɡæliəm/ GAL-ee-əm) is a chemical element that has the symbol Ga and atomic number 31. Elemental gallium does not occur in nature, but as the gallium(III) salt in trace amounts in bauxite and zinc ores. A soft silvery metallic poor metal, elemental gallium is a brittle solid at low temperatures. As it liquefies slightly above room temperature, it will melt in the hand. Its melting point is used as a temperature reference point, and from its discovery in 1875 to the semiconductor era, its primary uses were in high-temperature thermometric applications and in preparation of metal alloys with unusual properties of stability, or ease of melting; some being liquid at room temperature or below. The alloy Galinstan (68.5% Ga, 21.5% In, 10% Sn) has a melting point of about −19 °C (−2 °F).

In semiconductors, the major-use compound is gallium arsenide used in microwave circuitry and infrared applications. Gallium nitride and indium gallium nitride, minority semiconductor uses, produce blue and violet light-emitting diodes (LEDs) and diode lasers. Semiconductor use is now almost the entire (> 95%) world market for gallium, but new uses in alloys and fuel cells continue to be discovered.

Gallium is not known to be essential in biology, but because of the biological handling of gallium's primary ionic salt gallium(III) as though it were iron(III), the gallium ion localizes to and interacts with many processes in the body in which iron(III) is manipulated. As these processes include inflammation, which is a marker for many disease states, several gallium salts are used, or are in development, as both pharmaceuticals and radiopharmaceuticals in medicine.

Contents

[hide]

  • 1 Notable characteristics
  • 2 History
  • 3 Occurrence
  • 4 Production
  • 5 Applications
    • 5.1 Semiconductors
    • 5.2 Wetting and alloy improvement
    • 5.3 Galinstan and other liquid alloys
    • 5.4 Energy storage
    • 5.5 Biomedical applications
      • 5.5.1 As gallium(III) salts
      • 5.5.2 As radiogallium salts
    • 5.6 Other uses
  • 6 Chemistry
    • 6.1 Chalcogen compounds
    • 6.2 Aqueous chemistry
    • 6.3 Pnictogen compounds
    • 6.4 Halides
    • 6.5 Hydrogen compounds
  • 7 Precautions
  • 8 See also
  • 9 References
  • 10 External links

[edit] Notable characteristics

Elemental gallium is not found in nature, but it is easily obtained by smelting. Very pure gallium metal has a brilliant silvery color and its solid metal fractures conchoidally like glass. Gallium metal expands by 3.1 percent when it solidifies, and therefore storage in either glass or metal containers is avoided, due to the possibility of container rupture with freezing. Gallium shares the higher-density liquid state with only a few materials like silicon, germanium, bismuth, antimony and water.

Gallium attacks most other metals by diffusing into their metal lattice. Gallium for example diffuses into the grain boundaries of Al/Zn alloys[1] or steel,[2] making them very brittle. Also, gallium metal easily alloys with many metals, and was used in small quantities as a plutonium-gallium alloy in the plutonium cores of the first and third nuclear bombs, to help stabilize the plutonium crystal structure.[3]

The melting point of 302.9146 K (29.7646°C, 85.5763°F) is near room temperature. Gallium's melting point (mp) is one of the formal temperature reference points in the International Temperature Scale of 1990 (ITS-90) established by BIPM.[4][5][6] The triple point of gallium of 302.9166 K (29.7666°C, 85.5799°F), is being used by NIST in preference to gallium's melting point.[7]

Gallium is a metal that will melt in one's hand. This metal has a strong tendency to supercool below its melting point/freezing point. Seeding with a crystal helps to initiate freezing. Gallium is one of the metals (with caesium, rubidium, francium and mercury) which are liquid at or near normal room temperature, and can therefore be used in metal-in-glass high-temperature thermometers. It is also notable for having one of the largest liquid ranges for a metal, and (unlike mercury) for having a low vapor pressure at high temperatures. Unlike mercury, liquid gallium metal wets glass and skin, making it mechanically more difficult to handle (even though it is substantially less toxic and requires far fewer precautions). For this reason as well as the metal contamination problem and freezing-expansion problems noted above, samples of gallium metal are usually supplied in polyethylene packets within other containers.

Crystallization of gallium from the melt

Gallium does not crystallize in any of the simple crystal structures. The stable phase under normal conditions is orthorhombic with 8 atoms in the conventional unit cell. Each atom has only one nearest neighbor (at a distance of 244 pm) and six other neighbors within additional 39 pm. Many stable and metastable phases are found as function of temperature and pressure.

The bonding between the nearest neighbors is found to be of covalent character, hence Ga2 dimers are seen as the fundamental building blocks of the crystal. This explains the drop of the melting point compared to its neighbour elements aluminium and indium. The compound with arsenic, gallium arsenide is a semiconductor commonly used in light-emitting diodes.

High-purity gallium is dissolved slowly by mineral acids.

Gallium has no known biological role, although it has been observed to stimulate metabolism.[8]

[edit] History

Gallium (the Latin Gallia means "Gaul", essentially modern France) was discovered spectroscopically by Paul Emile Lecoq de Boisbaudran in 1875 by its characteristic spectrum (two violet lines) in an examination of a zinc blende from the Pyrenees.[9] Before its discovery, most of its properties had been predicted and described by Dmitri Mendeleev (who had called the hypothetical element "eka-aluminium" on the basis of its position in his periodic table). Later, in 1875, Lecoq obtained the free metal by electrolysis of its hydroxide in potassium hydroxide solution. He named the element "gallia" after his native land of France. It was later claimed that, in one of those multilingual puns so beloved of men of science in the early 19th century, he had also named gallium after himself, as his name, "Le coq", is the French for "the rooster", and the Latin for "rooster" is "gallus"; however, in an 1877 article Lecoq denied this supposition.[10] (The supposition was also noted in Building Blocks of the Universe, a book on the elements by Isaac Asimov; cf. the naming of the J/ψ meson.)

[edit] Occurrence

Gallium does not exist in free form in nature, and the few high-gallium minerals such as gallite (CuGaS2) are too rare to serve as a primary source of the element or its compounds. Its abundance in the Earth's crust is approximately 16.9 ppm.[11] Gallium is found and extracted as a trace component in bauxite and to a small extent from sphalerite. The amount extracted from coal, diaspore and germanite in which gallium is also present is negligible. The United States Geological Survey (USGS) estimates gallium reserves to exceed 1 million tonnes, based on 50 ppm by weight concentration in known reserves of bauxite and zinc ores.[12][13] Some flue dusts from burning coal have been shown to contain small quantities of gallium, typically less than 1% by weight.[14][15][16][17]

[edit] Production

The only two economic sources for gallium are as byproduct of aluminium and zinc production, while the sphalerite for zinc production is the minor source. Most gallium is extracted from the crude aluminium hydroxide solution of the Bayer process for producing alumina and aluminium. A mercury cell electrolysis and hydrolysis of the amalgam with sodium hydroxide leads to sodium gallate. Electrolysis then gives gallium metal. For semiconductor use, further purification is carried out using zone melting, or else single crystal extraction from a melt (Czochralski process). Purities of 99.9999% are routinely achieved and commercially widely available.[18] An exact number for the world wide production is not available, but it is estimated that in 2007 the production of gallium was 184 tonnes with less than 100 tonnes from mining and the rest from scrap recycling.[12]

[edit] Applications

[edit] Semiconductors

Gallium based blue LEDs

Gallium phosphate crystal

The semiconductor applications are the main reason for the low-cost commercial availability of the extremely high-purity (99.9999+%) metal.

Gallium arsenide (GaAs) and gallium nitride (GaN) used in electronic components represented about 98% of the gallium consumption in the United States in 2007. About 66% of semiconductor gallium is used in the U.S. in integrated circuits (mostly gallium arsenide), such as the manufacture of ultra-high speed logic chips and MESFETs for low-noise microwave preamplifiers in cell phones. About 20% is used in optoelectronics.[12] World wide gallium arsenide makes up 95% of the annual global gallium consumption.[18]

Gallium arsenide is used in optoelectronics in a variety of infrared applications. Aluminium gallium arsenide (AlGaAs) is used in high-powered infrared laser diodes. As a component of the semiconductors indium gallium nitride and gallium nitride, gallium is used to produce blue and violet optoelectronic devices, mostly laser diodes and light-emitting diodes. For example, gallium nitride 405 nm diode lasers are used as a violet light source for higher-density compact disc data storage, in the Blu-ray Disc standard.[19]

Gallium is used as a dopant for the production of solid-state devices such as transistors. However, worldwide the actual quantity used for this purpose is minute, since dopant levels are usually of the order of a few parts per million.

Multijunction photovoltaic cells, developed for satellite power applications, are made by molecular beam epitaxy or metalorganic vapour phase epitaxy of thin films of gallium arsenide, indium gallium phosphide or indium gallium arsenide.The Mars Exploration Rovers and several satellites use triple junction gallium arsenide on germanium cells.[20] Gallium is the rarest component of new photovoltaic compounds (such as copper indium gallium selenium sulfide or Cu(In,Ga)(Se,S)2) for use in solar panels as a more efficient alternative to crystalline silicon.[21]

[edit] Wetting and alloy improvement

  • Because gallium wets glass or porcelain, gallium can be used to create brilliant mirrors. When the wetting action of gallium-alloys is not desired (as in Galinstan glass thermometers), the glass must be protected with a transparent layer of gallium(III) oxide.[22]
  • Gallium readily alloys with most metals, and has been used as a component in low-melting alloys. The plutonium used in nuclear weapon pits is machined by alloying with gallium to stabilize its δ phase.[23]
  • Gallium added in quantities up to 2% in common solders can aid wetting and flow characteristics.

[edit] Galinstan and other liquid alloys

A nearly eutectic alloy of gallium, indium, and tin is a room temperature liquid which is widely available in medical thermometers, replacing problematic mercury. This alloy, with the trade-name Galinstan (with the "-stan" referring to the tin), has a low freezing point of −19 °C (−2.2°F).[24] It has been suggested that this family of alloys could also be used to cool computer chips in place of water.[25] Much research is being devoted to gallium alloys as substitutes for mercury dental amalgams, but these compounds have yet to see wide acceptance.

[edit] Energy storage

Aluminium is reactive enough to reduce water to hydrogen, being oxidized to aluminium oxide. However, the aluminium oxide forms a protective coat which prevents further reaction. Galinstan has been applied to activate aluminium (removing the oxide coat), so that aluminium can react with water, generating hydrogen and steam in a reaction being considered as a helpful step in a hydrogen economy.[26][dubious – discuss] A number of other gallium-aluminium alloys are also usable for the purpose of essentially acting as chemical energy store to generate hydrogen from water, on-site.

After reaction with water the resultant aluminium oxide and gallium mixture must be reformed back into electrodes with energy input.[26][27] The thermodynamic efficiency of the aluminium smelting process is estimated as 50%.[28] Therefore, at most only half the energy that goes into smelting the aluminium could be recovered by a hydrogen fuel cell.

[edit] Biomedical applications

[edit] As gallium(III) salts

  • Gallium nitrate (brand name Ganite) has been used as an intravenous pharmaceutical to treat hypercalcemia associated with tumor metastasis to bones. Gallium is thought to interfere with osteoclast function. It may be effective when other treatments for maligancy-associated hypercalcemia are not.[29]
  • Gallium maltolate, an orally-aborbable form of gallium(III) ion, is in clinical and preclinical trials as a potential treatment for a number of types of cancer, infectious disease, and inflammatory disease.[30]
  • Research is being conducted to determine whether gallium ion can be used to fight bacterial infections in people with cystic fibrosis. Gallium is similar in size to iron, an essential nutrient for respiration. When gallium ions are mistakenly picked up by bacteria such as Pseudomonas, the bacteria's ability to respire is interfered with and the bacteria die. The mechanism behind this is that iron is redox active, which allows for the transfer of electrons during respiration, but gallium is redox inactive.[31][32]

[edit] As radiogallium salts

Gallium-67 salts such as gallium citrate and gallium nitrate are used as radiopharmaceutical agents in a nuclear medicine imaging procedure commonly referred to as a gallium scan. The form or salt of gallium is not important, since it is the free dissolved gallium ion Ga3+ which is the active radiotracer. For these applications, the radioactive isotope 67Ga is used. The body handles Ga3+ in many ways as though it were iron, and thus it is bound (and concentrates) in areas of inflammation, such as infection, and also areas of rapid cell division. This allows such sites to be imaged by nuclear scan techniques. This use has largely been replaced by fluorodeoxyglucose (FDG) for positron emission tomography, "PET" scan and indium-111 labelled leukocyte scans. However, the localization of gallium in the body has some properties which make it unique in some circumstances from competing modalities using other radioisotopes.

Gallium-68, a positron emitter with a half life of 68 min., is now used as a diagnostic radionuclide in CT-PET when linked to pharmaceutical preparations such as DOTATOC, a somatostatin analogue used for neuroendocrine tumors investigation, and DOTATATE, a newer one, used for neuroendocrine metastasis and lung neuroendocrine cancer, such as certain types of microcytoma. Galium-68's preparation as a pharmaceutical is chemical and the radionuclide is extracted by elution from germanium-68, a synthetic radioisotope of germanium, in gallium-68 generators.

[edit] Other uses

  • Magnesium gallate containing impurities (such as Mn2+), is beginning to be used in ultraviolet-activated phosphor powder.
  • Neutrino detection. Possibly the largest amount of pure gallium ever collected in a single spot is the Gallium-Germanium Neutrino Telescope used by the SAGE experiment at the Baksan Neutrino Observatory in Russia. This detector contains 55-57 tonnes of liquid gallium.[33] Another experiment was the GALLEX neutrino detector operated in the early 1990s in an Italian mountain tunnel. The detector contained 12.2 tons of watered gallium-71. Solar neutrinos caused a few atoms of Ga-71 to become radioactive Ge-71, which were detected. The solar neutrino flux deduced was found to have a deficit of 40% from theory. This was not explained until better solar neutrino detectors and theories were constructed (see SNO).[34]
  • As a liquid metal ion source for a focused ion beam.
  • As alloying element in the magnetic shape memory alloy Ni-Mn-Ga.
  • In a classic prank by scientists, who fashion gallium spoons and serve tea to unsuspecting guests. The spoons melt in the hot tea.[35]

[edit] Chemistry

Gallium is found primarily in the +3 oxidation state. The +1 oxidation is also attested in some compounds, although they tend to disproportionate into elemental gallium and gallium(III) compounds. What are sometimes referred to as gallium(II) compounds are actually mixed-oxidation state compounds containing both gallium(I) and gallium(III).[36]

[edit] Chalcogen compounds

At room temperature, gallium metal is unreactive towards air and water due to the formation of a passive, protective oxide layer. At higher temperatures, however, it reacts with oxygen in the air to form gallium(III) oxide, Ga2O3.[36] Reducing Ga2O3 with elemental gallium in vacuum at 500 °C to 700 °C yields the dark brown gallium(I) oxide, Ga2O.[37]:285 Ga2O is a very strong reducing agent, capable of reducing H2SO4 to H2S.[37]:207 It disproportionates at 800 °C back to gallium and Ga2O3.[38]

Gallium(III) sulfide, Ga2S3, has 3 possible crystal modifications.[38]:104 It can be made by the reaction of gallium with hydrogen sulfide (H2S) at 950 °C.[37]:162 Alternatively, Ga(OH)3 can also be used at 747 °C:[39]

2 Ga(OH)3 + 3 H2S → Ga2S3 + 6 H2O

Reacting a mixture of alkali metal carbonates and Ga2O3 with H2S leads to the formation of thiogallates containing the [Ga2S4]2− anion. Strong acids decompose these salts, releasing H2S in the process.[38]:104-105 The mercury salt, HgGa2S4, can be used as a phosphor.[40]

Gallium also forms sulfides in lower oxidation states, such as gallium(II) sulfide and the green gallium(I) sulfide, the latter of which is produced from the former by heating to 1000 °C under a stream of nitrogen.[38]:94

The other binary chalcogenides, Ga2Se3 and Ga2Te3, have zincblende structure. They are all semiconductors, but are easily hydrolysed, limiting their usefulness.[38]:104

[edit] Aqueous chemistry

Strong acids dissolve gallium, forming gallium(III) salts such as Ga2(SO4)3 and Ga(NO3)3. Aqueous solutions of gallium(III) salts contain the hydrated gallium ion, [Ga(H2O)6]3+.[41]:1033 Gallium(III) hydroxide, Ga(OH)3, may be precipitated from gallium(III) solutions by adding ammonia. Dehydrating Ga(OH)3 at 100 °C produces gallium oxide hydroxide, GaO(OH).[37]:140-141

Alkaline hydroxide solutions dissolve gallium, forming gallate salts containing the Ga(OH)−

4 anion.[36][41]:1033[42] Gallium hydroxide, which is amphoteric, also dissolves in alkali to form gallate salts.[37]:141 Although earlier work suggested Ga(OH)3−

6 as another possible gallate anion,[43] this species was not found in later work.[42]

[edit] Pnictogen compounds

Gallium reacts with ammonia at 1050 °C to form gallium nitride, GaN. Gallium also forms binary compounds with phosphorus, arsenic, and antimony: gallium phosphide (GaP), gallium arsenide (GaAs), and gallium antimonide (GaSb). These compounds have the same structure as ZnS, and have important semiconducting properties.[41]:1034 GaP, GaAs, and GaSb can be synthesized by the direct reaction of gallium with elemental phosphorus, arsenic, or antimony.[38]:99 They exhibit higher electrical conductivity than GaN.[38]:101 GaP can also be synthesized by the reaction of Ga2O with phosphorus at low temperatures.[44]

Gallium also forms ternary nitrides; for example:[38]:99

Li3Ga + N2 → Li3GaN2

Similar compounds with phosphorus and antimony also exist: Li3GaP2 and Li3GaAs2. These compounds are easily hydrolyzed by dilute acids and water.[38]:101

[edit] Halides

Gallium(III) oxide reacts with fluorinating agents such as HF or F2 to form gallium(III) fluoride, GaF3. It is an ionic compound strongly insoluble in water. However, it does dissolve in hydrofluoric acid, in which it forms an adduct with water, GaF3·3H2O. Attempting to dehydrate this adduct instead forms GaF2OH·nH2O. The adduct reacts with ammonia to form GaF3·3NH3, which can then be heated to form anhydrous GaF3.[37]:128-129

Gallium(III) chloride is formed by the reaction of gallium metal with chlorine gas.[36] Unlike the trifluoride, gallium(III) chloride exists as dimeric molecules, Ga2Cl6, with a melting point of 78 °C. This is also the case for the bromide and iodide, Ga2Br6 and Ga2I6.[37]:133

Like the other group 13 trihalides, gallium(III) halides are Lewis acids, reacting as halide acceptors with alkali metal halides to form salts containing GaX−

4 anions, where X is a halogen. They also react with alkyl halides to form carbocations and GaX−

4.[37]:136-137

When heated to a high temperature, gallium(III) halides react with elemental gallium to form the respective gallium(I) halides. For example, GaCl3 reacts with Ga to form GaCl:

2 Ga + GaCl3 3 GaCl (g)

At lower temperatures, the equilibrium shifts toward the left and GaCl disproportionates back to elemental gallium and GaCl3. GaCl can also be made by the reaction of Ga with HCl at 950 °C; it can then be condensed as red solid.[41]:1036

Gallium(I) compounds can be stabilized by forming adducts with Lewis acids. For example:

GaCl + AlCl3 → Ga+[AlCl4]−

The so-called "gallium(II) halides", GaX2, are actually adducts of gallium(I) halides with the respective gallium(III) halides, having the structure Ga+[GaX4]−. For example:[36][41]:1036[45]

GaCl + GaCl3 → Ga+[GaCl4]−

[edit] Hydrogen compounds

Like aluminium, gallium also forms a hydride, GaH3, known as gallane, which may be obtained by the reaction of lithium gallanate (LiGaH4) with gallium(III) chloride at −30 °C:[41]:1031

3 LiGaH4 + GaCl3 → 3 LiCl + 4 GaH3

In the presence of dimethyl ether as solvent, GaH3 polymerizes to (GaH3)n. If no solvent is used, the dimer Ga2H6 (digallane) is formed as a gas. Its structure is similar to diborane, having two hydrogen atoms bridging the two gallium centers,[41]:1031 unlike α-AlH3 in which aluminium has a coordination number of 6.[41]:1008

Gallane is unstable above −10 °C, decomposing to elemental gallium and hydrogen.[46]

[edit] Precautions

While not considered toxic, the data about gallium are inconclusive. Some sources suggest that it may cause dermatitis from prolonged exposure; other tests have not caused a positive reaction. Like most metals, finely divided gallium loses its luster and powdered gallium appears gray. Thus, when gallium is handled with bare hands, the extremely fine dispersion of liquid gallium droplets, which results from wetting skin with the metal, may appear as a gray skin stain.

引用出處:

http://en.wikipedia.org/wiki/Gallium

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

沒有留言: